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Abstract

We introduce and study a simple model of a limit order-driven market. Traders in this model
can either trade stock (or any other risky asset for that matter) at the market price or place a
limit order, i.e., an instruction to buy (sell) a certain amount of the stock if its price falls below
(raises above) a prede�ned level. The choice between these two options is purely random (there
are no strategies involved), and the execution price of a limit order is determined simply by
o�setting the most recent market price by a random amount. Numerical simulations of this model
revealed that despite such minimalistic rules the price pattern generated by this model has such
realistic features as “fat” tails of the probability distribution of price uctuations, characterized
by a crossover between two power law exponents, long range correlations of the volatility, and
a non-trivial Hurst exponent of the price signal. c© 2000 Elsevier Science B.V. All rights
reserved.

In recent years a considerable e�ort was invested in high-quality statistical analysis
of short-time uctuations in prices of various risky assets. 1 The unifying feature of
all these assets is that their price is determined by law of supply and demand while
the asset being traded on an open market. These studies resulted in a discovery of
robust and to a certain degree universal features of such uctuations, and triggered
theoretical studies aimed at explaining or simply mimicking these observations. The
list of empirical facts that need to be addressed by any successful theory or model is:
(i) The histogram of short time-lag increments of market price has a very peculiar

non-Gaussian shape with a sharp maximum and broad wings [3]. The current
consensus about the functional form of this distribution is that up to a certain
point it follows a Pareto–Levy distribution, with the exponent of its power law
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1 A general discussion of the phenomenology of market prices can be found in two recent
books by Bouchaud and Potters [1] (a draft of its English translation can be downloaded from
http:==www.science-�nance.fr=book.html), and Mantegna and Stanley [2].
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tail 1 + �1 ∼ 2:4 − 2:7, after which it crosses over either to a steeper power
law with an exponent 1 + �2 ∼ 3:7 − 4:3 [4–6], or, as was reported in earlier
studies [7,8], to an exponential decay. In both cases this crossover ensures a �nite
variance (second moment) of the distribution.

(ii) When viewed on time scales less than several trading days, the graph of price
vs. time appears to have a Hurst exponent H ' 0:6–0.7 [3,8], di�erent from an
ordinary uncorrelated random walk value HRW = 0:5.

(iii) The volatility (the second moment of price uctuations) exhibits correlated be-
havior. It is manifested in clustering of volatility, i.e., the presence of regions of
unusually high amplitude of uctuations separated by relatively quiet intervals,
visible with a “naked eye” in the graph of price increment vs. time. These clus-
tering e�ects determine the shape of the autocorrelation function of volatility as
a function of time, which was shown to decay as a power law with a very small
exponent  ' 0:3–0.4 and no apparent cuto� [7,9].

There are several approaches to modeling market mechanics. In one type of models
price uctuations result from trading activity of conscious agents, whose decisions to
buy or sell are dictated by strategies they follow. These strategies evolve in time (often
according to some Darwinian rules) and give rise to a slowly changing uctuation
pattern. There is little doubt that the evolution and dynamics of investor’s strategies
and beliefs inuence the long term behavior of real market prices. For example, if some
company could not keep up with the competition, sooner or later investors would realize
it, and in the long-term its stock price would go down. However, it is unclear how does
it inuence the properties of stock price uctuations at very short timescales, which
do not allow time for traders to update their strategies or for a company to change
its pro�le. Another problem with models explaining short time price uctuations in
terms of strategy evolution is that they inevitably lead their creators to shaky grounds
of speculations about relevant and irrelevant psychological motivations of a “typical”
trader in a highly heterogeneous trader population. The remarkable universality of the
general features of price uctuations in markets of di�erent types of risky assets such
as stocks and their derivatives, foreign currencies, and commodities (say, cotton or oil)
makes one to suspect that in fact psychological factors play little role in determining
their short time properties, and leads one to try to look for a simpler mechanism giving
rise to these features.
In this work we do a �rst step in this direction by introducing and numerically

studying a simple market model, where a nontrivial price pattern arises not due to the
evolution of trading strategies, but rather as a consequence of trading rules themselves,
and to the way in which supply and demand determine the price on an open market.
Before we proceed with formulating the rules of our model we need to de�ne sev-
eral common market terms. A trader on an open market is usually allowed to place
a so-called “limit order to sell (buy)”, which is an instruction to automatically sell
(buy) a particular amount of the traded asset, which we for simplicity will be simply
referring to as stock, if its market price would raise higher (or drop lower for a limit
buy order) than the predetermined threshold. This threshold is sometimes referred to as
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the execution price of the limit order. In many modern markets, known to economists
as order-driven markets,2 limit orders placed by ordinary traders constitute the major
source of the liquidity of the market. It means that a request to immediately buy or
sell a particular amount of stock at the best market price, or “market order”, is �lled
by matching it to the best unsatis�ed limit order in the limit order book. To illustrate
how orders are executed in an order-driven market let us consider the following sim-
ple example: suppose one trader (trader #1) has submitted a limit order to sell 1000
shares of the stock of a company X, provided that its price would exceed $20=share.
Subsequently, another trader (trader #2) has submitted a limit order to sell 2000 shares
of X if the price would exceed $21=share. Finally, a third trader decides to buy 2000
shares of X at the market price. In the absence of other limit orders his order will be
�lled as follows: he will buy 1000 shares from trader #1 at $20=share and 1000 shares
from trader #2 at $21=share. After this transaction the limit order book would contain
only one partially �lled limit order to sell, that of trader #2 to sell 1000 shares of X
at $21=share.
Traders in our model can either trade stock at the market price or place a limit

order to sell or buy. To simplify the rules of our toy market, traders are allowed to
trade only one unit (lot) of stock in each transaction. That makes all limit and market
orders to be of the same size. The empirical study of limit-order trading at the ASX2

can be used to partially justify this simpli�cation. In this work it was observed that
limit orders mostly come in sizes given by round numbers such as 1000 shares and (to
a lesser extent) 10 000 shares. Unlike many other market models, we do not �x the
number of traders. Instead, at each time step a “new” trader appears out of a “trader
pool” and attempts to make a transaction. With equal probabilities this new trader is
a seller or a buyer. He then performs one of the following two actions:
• with probability qlo he places a limit order to sell=buy.
• otherwise (with probability 1− qlo) he trades (sells or buys) at the market price.
The rule of execution of a market order in our model is particularly simple. Since all
orders are of the same size, a market order is simply �lled with the best limit order
(i.e., the highest bid among limit orders to buy and the lowest ask among limit orders
to sell), which is subsequently removed from the limit order book. This transaction
performed at the execution price of the best limit order sets a new value of the market
price p(t).
To complete the de�nition of the rules one needs to specify how a trader who selected

to place a new limit order decides on its execution price. Traders in our model do this
in a very “non-strategic” way by simply o�setting the price of the last transaction
performed on the market (current market price p(t)), by a random number �. This
positive random number is drawn each time from the same probability distribution
P(�). A new limit order to sell is placed above the current price at p(t)+�, while a

2 A nice introduction to the mechanics of limit-order driven markets in general, and the Australian Stock
Exchange in particular, by W. Yang can be found at http:==www.af.ecel.uwa.edu.au=acc�n=WorkingPapers=
abstracts=99-98.htm.
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new limit order to buy – below it at p(t)−�. This way ranges of limit orders to sell and
to buy never overlap, i.e., there is always a positive gap between highest bid and lowest
ask prices. This “random o�set” rule constitutes a reasonable �rst-order approximation
to what may happen in real order-driven markets and is open to modi�cations if it
fails a reality check. The most obvious variants of this rule, which we plan to study
in the near future, are (i) A model where each trader has his individual distribution
P(�). This modi�cation would allow for the coexistence of “patient” traders who do
not care very much about when their order will be executed or if it will be executed at
all, and can therefore select large � and pocket the di�erence, and “impatient” traders
who need their order to be executed soon, so they tend to select a small � or trade at
the market price. (ii) A model in which the probability distribution of � is determined
by the historic volatility of the market. This rule seems to be particularly reasonable
description of a real order-driven market. Indeed, if traders selection of � is inuenced
primarily by his desire to reduce waiting time before his order is executed, then it
would make sense to select a larger � in a more volatile market, which is likely
to cover larger price interval during the same time interval. However, before any of
these more complicated versions of this rule could be explored one needs to study
and understand the behavior of the base model, where � is just a random number,
uncorrelated with volatility and=or the individual trader pro�le.
One should notice that the behavior of traders in our model is completely passive

and “mechanical”: once a limit order is placed it cannot be removed or shifted in
response to a current market situation. This makes our rules fundamentally di�erent
from these of the Bak–Paczuski–Shubik (BPS) model [10], where traders randomly
increase or decrease their quotes at each time step. Such haphazard trader behavior
cannot be realized in an order-driven market, where each change of the limit-order
execution price carries a fee.
We have simulated our model with qlo= 1

2 , i.e., when on average half of the traders
select to place limit orders, while the other half trade at the market price. The random
number �, used in setting an execution price of a new limit order, was drawn from a
uniform distribution in the interval 06�6�max=4. Obviously, price patterns in models
with di�erent values of �max are identical up to an overall rescaling factor. Our choice
of �max = 4 was dictated by the desire to compare the behavior of the model with
continuous spectrum of � to that with a discrete spectrum � = {1; 2; 3; 4}. Discrete
spectrum of � may better compare to the behavior of real markets, where all prices
are multiples of a unit tick size. Our comparison con�rmed that most scaling properties
of the price pattern are the same in both variants. We were surprised to notice that
non-trivial features of our model survived even in a model with deterministic �=1. To
improve the speed of numerical simulations we studied a version of the model, where
only 217 lowest ask and highest bid quotes were retained. The list of quotes was kept
ordered at all times, which accelerated the search for the highest bid and lowest ask
limit orders whenever a transaction at the market price was requested. We also studied
a variant of our model where each limit order had an expiration time: if a limit order
was not �lled within 1000 time steps it was removed from the list. Not only this rule
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Fig. 1. The price signal p(t) and its derivative �p = p(t + 1) − p(t) as a function of time. The in-
set shows the Fourier transform of the autocorrelation function of the price signal. Solid line is a �t
Sp(f) = f−(1+2H) = f−3=2, corresponding to the Hurst exponent H = 1

4 .

prevented an occasional accumulation of a very long list of limit orders, but also it made
sense in terms of how limit orders are organized in a real market. Indeed, limit orders
at, for example, New York Stock Exchange are usually valid only during the trading
day when they were submitted. There are also so called “good till canceled” (or open)
orders, which are valid until they are executed or withdrawn. 3 Then the version of our
model, where the expiration time of a limit order is not speci�ed corresponds to all
orders being “good till canceled”, while the version, where only the most recent orders
are kept, mimics the market composed of only “day orders”. We have checked that
for any reasonably large value of the cuto� parameter, no matter if it is an expiration
time or the number of best sell=buy orders to keep, one ends up with the same scaling
properties of price uctuations.
In Fig. 1, we present an example of price history in one of the runs of our model.

Visually it is clear that this graph is quite di�erent from an ordinary random walk. This
impression is con�rmed by looking at the pattern of price increments p(t + 1)−p(t),
shown in the same �gure. One can see that large increments are clustered in regions
of high volatility, separated by relatively quite intervals. The Fourier spectrum of the
price signal averaged over many runs of the models provides us with a value of the
Hurst exponent H of the price graph. Indeed, the exponent of the Fourier transform
of price autocorrelation function Sp(f) is related to the Hurst exponent as Sp(f) ∼
3 The de�nitions of key market terms used at the NYSE can be found by selecting “Glossary” at
http:==www.nyse.com=marketinfo=marketinfo.html.
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f−(1+2H). The log–log plot of Sp(f), logarithmically binned and averaged over multiple
realizations of the price signal of length 218, is shown in the inset to Fig. 1. It has an
exceptionally clean f−3=2 functional form for over 5 decades in f, which corresponds
to the Hurst exponent of the price signal H = 1

4 . This exponent is de�nitely di�erent
from its random walk value HRW = 1

2 . A Hurst exponent H =
1
4 was also observed in

the Bak–Paczuski–Shubik model A [10,11]. An intuitive argument in favor of a small
Hurst exponent can be constructed for our model. According to the rules of the model
an execution price of a new limit order is always determined relative to the current
price. It is also clear that a large density of limit orders around current price position
reduces its mobility. Indeed, in order for the price to move to the new position all limit
orders in the interval between the current and new values of the price must be �lled
by market orders. If for one reason or the other the price remained fairly constant for
a prolonged period of time, limit orders created during this time tend to further trap
the price in this region. This self-reinforcing mechanism qualitatively explains the slow
rate of price change in our model. Unfortunately, the nontrivial Hurst exponent H = 1

4
is a step in the wrong direction from its random walk value HRW= 1

2 . Indeed, the short
time Hurst exponent of real stock prices was measured to be Hreal ' 0:6− 0:7.
The amplitude of price uctuations in our model has signi�cant long-range correla-

tions. One natural measure of these correlations is the autocorrelation function of the
absolute value of price increments Sabs(t)=〈|p(t′+t+1)−p(t′+t)||p(t′+1)−p(t′)|〉t′
[9]. In our model this quantity was measured to have a power-law tail Sabs(t)˙ t−1=2.
This is illustrated in Fig. 2 where the Fourier transform of Sabs(t) has a clear f−1=2

form. The exponent = 1
2 of Sabs(t)˙ t− in our model is not far from = 0:3 mea-

sured in the S&P 500 stock index [9]. In Fig. 2 we also show the Fourier transform
of the autocorrelation function of signs of price increments Ssign(t) = 〈sign[p(t′ + t +
1)− p(t′ + t)]sign[p(t′ + 1)− p(t′)]〉t′ , which has a white noise (frequency indepen-
dent) form. This is again, similar to the situation in real market, where signs of price
increments are known to have only short-range (¡30 min) correlations.
Finally, in Fig. 3 we present three histograms of price increments p(t + �t)− p(t)

in our model, measured with time lags �t = 1; 10; 100. The overall form of these
histograms is strongly non-Gaussian and is reminiscent of the shape of such distribution
for real stock prices. As the time lag is increased the sharp maximum of the distribution
gradually softens, while its wings remain strongly non-Gaussian. In the inset we show a
log–log plot of the histogram of p(t+1)−p(t) (�t=1) collected during tstat =3:5×107
timesteps (as compared to tstat = 40 000 for the data shown in the main panel) and
logarithmically binned. One can clearly distinguish two power law regions separated
by a sharp crossover around p(t + 1)− p(t) ' 1. The exponents of these two regions
were measured to be 1+ �1 = 0:6± 0:1 and 1+ �2 = 3± 0:2. The power-law exponent
1+ �2 = 3 of the far tail lies right at the borderline, separating the Pareto–Levy region
1 + � ¡ 3, where the distribution has an in�nite second moment, from the Gaussian
region. In any case, since price uctuations in our model were shown to have long-range
correlations, one should not expect convergence of the price uctuations distribution to
a universal Pareto–Levy or Gaussian functional form as �t is increased. The existence
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Fig. 2. Fourier transforms of autocorrelation functions of signs of price increments (×) and absolute values
of price increments (•) averaged over 700 realization of price record 218 ≈ 2:6× 105 time steps long.

Fig. 3. Histograms of price increments p(t) = p(t + �t)− p(t) with time-lags �t = 1 (◦), 10 (•), and 100
(×). The inset shows the histogram of positive price increments p(t + 1)− p(t)¿ 0 (negative increments
have a virtually indistinguishable histogram) on a log–log plot. Power law �ts in two regions give exponents
1 + �1 = 0:6 and 1 + �2 = 3.
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of a similar power law to power-law crossover was reported in the distribution of
stock price increments in NYSE, albeit with di�erent exponents 1+�1 ' 1:4−1:7, and
1 + �2 ' 4− 4:5 [4,5]. The mechanism responsible for this crossover in a real market
is at present unclear.
In conclusion, we have introduced and numerically studied a simple model of a

limit order-driven market, where agents randomly submit limit or market orders. The
execution price of new limit orders is set by o�setting the current market price by
a random amount. In spite of such strategy-less, mechanistic behavior of traders, the
price time series in our model exhibit a highly non-trivial behavior characterized by
long range correlations, fat tails in the histogram of its increments, and a non-trivial
Hurst exponent. These results are in qualitative agreement with empirically observed
behavior of prices on real stock markets. More work is required to try to modify the
rules of our model in order to make this agreement more quantitative.
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